
Deconstructing the 
Database

Rich Hickey

Most programs are outside the bounds of and single process we write 
in any single FP language



What is Datomic?

• A new database

• A sound model of information, with time

• Provides database as a value to applications

• Bring declarative programming to applications

• Focus on reducing complexity

Not going to do a full rationalization or overview
Focus on information important for Datomic, not necessarily for all 
use of dbs/stores



DB Complexity

• Stateful

• Same query, different results

• no basis

• Over there

• ‘Update’ poorly defined

• Places

Inherent complexity in state



Update

• What does update mean?

• Does the new replace the old?

• Granularity? new ___ replace the old ___

• Visibility?

Granularity and replacement the big issues



Manifestations

• Wrong programs

• Scaling problems

• Round-trip fears

• Fear of overloading server

• Coupling, e.g. questions with reporting

read committed vs repeatable, serializable



Consistency and Scale

• What’s possible?

• Distributed redundancy and consistency?

• Elasticity

• Inconsistency huge source of complexity

dynamo and bigtable



Information and Time

• Old-school memory and records

• The kind you remember

... and keep

• Auditing and more



Perception and 
Reaction

• No polling

• Consistent



Coming to Terms
Value

• An immutable 
magnitude, quantity, 
number... or immutable 
composite thereof

Identity

• A putative entity we 
associate with a series of 
causally related values 
(states) over time

State

• Value of an identity at a 
moment in time

Time

• Relative before/after 
ordering of causal values



v1

F

v2

F

v3

F

v4

Process events 
(pure functions)

Observers/perception/memory

States 
(immutable values)Identity 

(succession of 
states)

Epochal Time Model



Implementing Values

• Persistent data structures

• Trees

• Structural sharing



Structural Sharing

Past
Next



Process events 
(pure functions)

Observers/perception/memory

Identity 
(succession of 

states)

Place Model

DB 
Connection

Transactions

Queries

The Database Place

F F F

We should recognize - same problems as OO
Conflates identity and value, collapses time



v1

F

v2

F

v3

F

v4

Process events 
(pure functions)

Observers/perception/memory

States 
(immutable values)Identity 

(succession of 
states)

Epochal Time Model

DB 
Connection

Transactions

DB Values

Queries

This is what we want - transactions are functions of db values
queries as well



Traditional Database

cache

Server

Indexing
Trans-
actions

Query

App Process

I/O

App
ORM?

Caching 
policy?

Strings
DDL + DMLResult Sets Serialized

???
Serialized

???

Disk

what’s makes up a database?
cache over DB access, disk locality was important



The Choices

• Coordination

• how much, and where?

• process requires it

• perception shouldn’t

• Immutability

• sine qua non

coordinate up front or later
immutability advantages with eventually consistent systems



Approach

• Move to information model

• Split process and perception

• Immutable basis in storage

• Novelty in memory



Information

• Inform

• ‘to convey knowledge via facts’

• ‘give shape to (the mind)’

• Information

• the facts



• Fact - ‘an event or thing known to have 
happened or existed’

• From: factum - ‘something done’

• Must include time

• Remove structure (a la RDF)

• Atomic Datom 

• Entity/Attribute/Value/Transaction(time)

Facts

don’t get more flexibility by trading tables for documents
factum - “something done”



Database State

• The database as an expanding value

• An accretion of facts

• The past doesn’t change - immutable

• Process requires new space

• Fundamental move away from places

What is the state - snapshot of a referential model?



Accretion

• Root per transaction doesn’t work

• Latest values include past as well

• The past is sub-range

• Important for information model

can we just do shared structure from before on disk?



Process

• Reified

• Primitive representation of novelty

• Assertions and retractions of facts

• Minimal

• Other transformations expand into those

Important to accretion that novelty representation is minimal



Deconstruction

• Process

• Transactions

• Indexing

• O

• Perception/Reaction

• Query

• Indexes

• I

Server

Indexing
Trans-
actions

Query I/O Disk



State

• Must be organized to support query

• Sorted set of facts

• Maintaining sort live in storage - bad

• BigTable - mem + storage merge

• occasional merge into storage

• persistent trees

Databases are about leverage



Indexing

• Maintaining sort live in storage - bad

• BigTable et al:

• Accumulate novelty in memory

• Current view: mem + storage merge

• Occasional integrate mem into storage

Releases memory



Transactions and 
Indexing

Index
Merging

Trans-
actions

Log Data Segments

Live 
Index

Index Data Segments

Storage

Novelty



Perception

Live 
Index Storage

Index Data Segments

Novelty

Just a merge join. Any coordination required? Contention?
How does live index get updated?
Live vs periodic now separate decision



Components

• Transactor

• Peers

• Your app servers, analytics machines etc

• Redundant storage service

Physical architecture



Datomic Architecture
App Server Process

Peer Lib

Query

Cache

App

Live 
IndexComm

App Server Process
Peer Lib

Query

Cache

App

Live 
IndexComm

Transactor

Indexing Trans-
actions

App Server Process
Peer Lib

Query

Cache

App

Live 
IndexComm

Transactor

Indexing Trans-
actions

Data Segments

Data Segments
Redundant 

segment storage

Storage Service

Segment storage

memcached cluster

(optional)

standby

But, storage now remote, slow? No - cache everywhere



Transactor

• Accepts transactions

• Expands, applies, logs, broadcasts

• Periodic indexing, in background

• Indexing creates garbage

• Storage GC



Peer Servers

• Peers directly access storage service

• Have own query engine

• Have live mem index and merging

• Two-tier cache

• Datoms w/object values (on heap)

• Segments (memcached)



Consistency and Scale

• Process/writes go through transactor

• traditional server scaling/availability

• Immutability supports consistent reads

• without transactions

• Query scales with peers

• Elastic/dynamic e.g. auto-scaling

consistency as in db satisfies consistency predicate
loopholes 7 and 10?



Memory Index

• Persistent sorted set

• Large internal nodes

• Pluggable comparators

• 2 sorts always maintained

• EAVT, AEVT

• plus AVET, VAET



Storage

• Log of tx asserts/retracts (in tree)

• Various covering indexes (trees)

• Storage service/server requirements

• Data segment values (K->V)

• atoms (consistent read)

• pods (conditional put)



Structural Sharing

Past
Next



What’s in a DB Value?

EAVT

t
VeAET
AEVT

db atom

nextT
asOfT

Lucene index

history

live Lucene

sinceT

index

db value
live Storage

Hierarchical 
Cache

Roots

Memory index
(live window)

Storage-backed index

Identity

Value

Value can be lazily loaded, since source immutable



Index in Storage

Sorted
Datoms

Index Root 
of key->dir

T
42

VeAETAEVT AVET LuceneEAVT

dirs

segs

Index ref

Identity

Value



Datomic on Riak
+ ZooKeeper

• Riak

redundant, distributed, highly available

durable

eventually consistent

• ZooKeeper

redundant, durable, 

consistent (ordered ops + CAS)



Datomic on Riak
+ ZooKeeper

RiakZooKeeper

Index ref

Log ref

Catalog refCoord ref

Identities Values

pointer swap mentioned by Eric Brewer this morning



Riak Usage
• Everything put into Riak is immutable

• N=3, W=2, DW=2

• R=1, not-found-ok = false

‘first found’ semantics

• There or not

no vector clocks, siblings etc

• No speculative lookup

What notion of consistency?
Application-level predicate



Transactor

Indexing Trans-
actions

App Process
App Process

Peer App Server Process
Peer Lib

Query

Cache

App

Live 
IndexComm

Transactor

Indexing Trans-
actions

Data Segments

Redundant 
segment storage

Storage Server/Service

Segment storage

Peer Service
Peer Service

Peer REST Server

Query

Cache

REST
Server

Live 
IndexComm

App ProcessApp ProcessClient App Process (any language)

App

REST
Client

Data Segments

memcached cluster

(optional)

HTTP + Server-Sent Events

Standby

Full Datomic 
Stack



Stable Bases

• Same query, same results

• db permalinks!

• communicable, recoverable

• Multiple conversations about same value

//Peer
Database db = connection.db().asOf(1000);
Peer.q(aQuery, db);

//Client
GET /data/mem/test/1000/datoms?index=aevt

basis

Value of values



DB Values
• Time travel

• db.asOf - past 

• db.since - windowed 

• db.with(tx) - speculative

• dbs are arguments to query, not implicit

• mock with datom-shaped data:

[[:fred :likes "Pizza"]
 [:sally :likes "Ice cream"]]



DB Simplicity Benefits
• Epochal state

• Coordination only for process

• Transactions well defined

• Functional accretion

• Freedom to relocate/scale storage, query

• Extensive caching

• Process events



The Database as a Value

• Dramatically less complex

• More powerful

• More scalable

• Better information model



Thanks for Listening!


