
Deconstructing the 
Database

Rich Hickey

Most programs are outside the bounds of and single process we write 
in any single FP language



What is Datomic?

• A new database

• A sound model of information, with time

• Provides database as a value to applications

• Bring declarative programming to applications

• Focus on reducing complexity

Not going to do a full rationalization or overview
Focus on information important for Datomic, not necessarily for all 
use of dbs/stores



DB Complexity

• Stateful

• Same query, different results

• no basis

• Over there

• ‘Update’ poorly defined

• Places

Inherent complexity in state



Update

• What does update mean?

• Does the new replace the old?

• Granularity? new ___ replace the old ___

• Visibility?

Granularity and replacement the big issues



Manifestations

• Wrong programs

• Scaling problems

• Round-trip fears

• Fear of overloading server

• Coupling, e.g. questions with reporting

read committed vs repeatable, serializable



Consistency and Scale

• What’s possible?

• Distributed redundancy and consistency?

• Elasticity

• Inconsistency huge source of complexity

dynamo and bigtable



Information and Time

• Old-school memory and records

• The kind you remember

... and keep

• Auditing and more



Perception and 
Reaction

• No polling

• Consistent



Coming to Terms
Value

• An immutable 
magnitude, quantity, 
number... or immutable 
composite thereof

Identity

• A putative entity we 
associate with a series of 
causally related values 
(states) over time

State

• Value of an identity at a 
moment in time

Time

• Relative before/after 
ordering of causal values
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Implementing Values

• Persistent data structures

• Trees

• Structural sharing



Structural Sharing

Past
Next



Process events 
(pure functions)

Observers/perception/memory

Identity 
(succession of 

states)

Place Model

DB 
Connection

Transactions

Queries

The Database Place

F F F

We should recognize - same problems as OO
Conflates identity and value, collapses time
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This is what we want - transactions are functions of db values
queries as well



Traditional Database

cache

Server

Indexing
Trans-
actions

Query

App Process

I/O

App
ORM?

Caching 
policy?

Strings
DDL + DMLResult Sets Serialized

???
Serialized

???

Disk

what’s makes up a database?
cache over DB access, disk locality was important



The Choices

• Coordination

• how much, and where?

• process requires it

• perception shouldn’t

• Immutability

• sine qua non

coordinate up front or later
immutability advantages with eventually consistent systems



Approach

• Move to information model

• Split process and perception

• Immutable basis in storage

• Novelty in memory



Information

• Inform

• ‘to convey knowledge via facts’

• ‘give shape to (the mind)’

• Information

• the facts



• Fact - ‘an event or thing known to have 
happened or existed’

• From: factum - ‘something done’

• Must include time

• Remove structure (a la RDF)

• Atomic Datom 

• Entity/Attribute/Value/Transaction(time)

Facts

don’t get more flexibility by trading tables for documents
factum - “something done”



Database State

• The database as an expanding value

• An accretion of facts

• The past doesn’t change - immutable

• Process requires new space

• Fundamental move away from places

What is the state - snapshot of a referential model?



Accretion

• Root per transaction doesn’t work

• Latest values include past as well

• The past is sub-range

• Important for information model

can we just do shared structure from before on disk?



Process

• Reified

• Primitive representation of novelty

• Assertions and retractions of facts

• Minimal

• Other transformations expand into those

Important to accretion that novelty representation is minimal



Deconstruction

• Process

• Transactions

• Indexing

• O

• Perception/Reaction

• Query

• Indexes

• I

Server

Indexing
Trans-
actions

Query I/O Disk



State

• Must be organized to support query

• Sorted set of facts

• Maintaining sort live in storage - bad

• BigTable - mem + storage merge

• occasional merge into storage

• persistent trees

Databases are about leverage



Indexing

• Maintaining sort live in storage - bad

• BigTable et al:

• Accumulate novelty in memory

• Current view: mem + storage merge

• Occasional integrate mem into storage

Releases memory



Transactions and 
Indexing

Index
Merging

Trans-
actions

Log Data Segments

Live 
Index

Index Data Segments

Storage

Novelty



Perception

Live 
Index Storage

Index Data Segments

Novelty

Just a merge join. Any coordination required? Contention?
How does live index get updated?
Live vs periodic now separate decision



Components

• Transactor

• Peers

• Your app servers, analytics machines etc

• Redundant storage service

Physical architecture



Datomic Architecture
App Server Process

Peer Lib

Query

Cache

App

Live 
IndexComm

App Server Process
Peer Lib

Query

Cache

App

Live 
IndexComm

Transactor

Indexing Trans-
actions

App Server Process
Peer Lib

Query

Cache

App

Live 
IndexComm

Transactor

Indexing Trans-
actions

Data Segments

Data Segments
Redundant 

segment storage

Storage Service

Segment storage

memcached cluster

(optional)

standby

But, storage now remote, slow? No - cache everywhere



Transactor

• Accepts transactions

• Expands, applies, logs, broadcasts

• Periodic indexing, in background

• Indexing creates garbage

• Storage GC



Peer Servers

• Peers directly access storage service

• Have own query engine

• Have live mem index and merging

• Two-tier cache

• Datoms w/object values (on heap)

• Segments (memcached)



Consistency and Scale

• Process/writes go through transactor

• traditional server scaling/availability

• Immutability supports consistent reads

• without transactions

• Query scales with peers

• Elastic/dynamic e.g. auto-scaling

consistency as in db satisfies consistency predicate
loopholes 7 and 10?



Memory Index

• Persistent sorted set

• Large internal nodes

• Pluggable comparators

• 2 sorts always maintained

• EAVT, AEVT

• plus AVET, VAET



Storage

• Log of tx asserts/retracts (in tree)

• Various covering indexes (trees)

• Storage service/server requirements

• Data segment values (K->V)

• atoms (consistent read)

• pods (conditional put)



Structural Sharing

Past
Next



What’s in a DB Value?

EAVT

t
VeAET
AEVT

db atom

nextT
asOfT

Lucene index

history

live Lucene

sinceT

index

db value
live Storage

Hierarchical 
Cache

Roots

Memory index
(live window)

Storage-backed index

Identity

Value

Value can be lazily loaded, since source immutable



Index in Storage

Sorted
Datoms

Index Root 
of key->dir

T
42

VeAETAEVT AVET LuceneEAVT

dirs

segs

Index ref

Identity

Value



Datomic on Riak
+ ZooKeeper

• Riak

redundant, distributed, highly available

durable

eventually consistent

• ZooKeeper

redundant, durable, 

consistent (ordered ops + CAS)



Datomic on Riak
+ ZooKeeper

RiakZooKeeper

Index ref

Log ref

Catalog refCoord ref

Identities Values

pointer swap mentioned by Eric Brewer this morning



Riak Usage
• Everything put into Riak is immutable

• N=3, W=2, DW=2

• R=1, not-found-ok = false

‘first found’ semantics

• There or not

no vector clocks, siblings etc

• No speculative lookup

What notion of consistency?
Application-level predicate



Transactor

Indexing Trans-
actions

App Process
App Process

Peer App Server Process
Peer Lib

Query

Cache

App

Live 
IndexComm

Transactor

Indexing Trans-
actions

Data Segments
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segment storage

Storage Server/Service

Segment storage

Peer Service
Peer Service

Peer REST Server

Query

Cache

REST
Server

Live 
IndexComm

App ProcessApp ProcessClient App Process (any language)

App

REST
Client

Data Segments

memcached cluster
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HTTP + Server-Sent Events

Standby

Full Datomic 
Stack



Stable Bases

• Same query, same results

• db permalinks!

• communicable, recoverable

• Multiple conversations about same value

//Peer
Database db = connection.db().asOf(1000);
Peer.q(aQuery, db);

//Client
GET /data/mem/test/1000/datoms?index=aevt

basis

Value of values



DB Values
• Time travel

• db.asOf - past 

• db.since - windowed 

• db.with(tx) - speculative

• dbs are arguments to query, not implicit

• mock with datom-shaped data:

[[:fred :likes "Pizza"]
 [:sally :likes "Ice cream"]]



DB Simplicity Benefits
• Epochal state

• Coordination only for process

• Transactions well defined

• Functional accretion

• Freedom to relocate/scale storage, query

• Extensive caching

• Process events



The Database as a Value

• Dramatically less complex

• More powerful

• More scalable

• Better information model



Thanks for Listening!


